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7.0  What We Need to Know When We Finish This Chapter

This chapter addresses the question of how accurately we can estimate the 
values of β and α from b and a. Regression produces an estimate of the 
standard deviation of εi. This, in turn, serves as the basis for estimates of 
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the standard deviations of b and a. With these, we can construct confidence 
intervals for β and α and test hypotheses about their values. Here are the 
essentials.

1.	 Section 7.1: We assume that the true distributions of b and a are the 
normal. Because we have to estimate their variances in order to stan-
dardize them, however, we have to treat their standardized versions as 
having t-distributions if our samples are small.

2.	 Section 7.2: Degrees of freedom count the number of independent 
observations that remain in the sample after accounting for the sample 
statistics that we’ve already calculated.

3.	 Equation (7.3), section 7.2: The ordinary least squares (OLS) estima-
tor for σ 2, the variance of εi, is
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4.	 Equation (7.9), section 7.3: The (1 − α)% confidence interval for β is
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5.	 Section 7.3: Larger samples and greater variation in xi yield narrower 
confidence intervals. So does smaller σ 2, but we can’t control that.

6.	 Equation (7.16), section 7.4: The two-tailed hypothesis test for 
H0 : β = β0 is
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	 The alternative hypothesis is H1 : β ≠ β0.

7.	 Section 7.4: The test of the null hypothesis H0 : β = 0 is always inter-
esting because, if true, it means that xi doesn’t affect yi.
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8.	 Equation (7.26), section 7.4: The upper-tailed hypothesis test for 
H0 : β = β0 is
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9.	 Section 7.5: The best linear unbiased estimator of E(y0) is ŷ a bx0 0= + .

10.	 Section 7.5: Predictions are usually more reliable if they are based on 
larger samples and made for values of the explanatory variable that 
are similar to those that appear in the sample.

7.1  The Distributions of b and a

Our review of confidence intervals and hypothesis tests in chapter 6 demon-
strates that we have to determine the distributions of our bivariate regression 
estimators b and a in order to know anything more about the relationships 
between them and the underlying population parameters β and α. These dis-
tributions depend on the distributions of the εi’s.

This can’t be much of a surprise. According to equation (5.38), b is a linear 
combination of all of the individual yi’s. As stated immediately after that equa-
tion, so is a. Each yi is a linear function of an εi, according to equation (5.1). 
Therefore, b and a are both linear functions of all of the εi’s.

Moreover, in sections 5.6 and 5.8, we’ve already shown that the expected 
values and population variances of b and a depend on the expected values, 
population variances, and population covariances of the εi’s. The expected 
values and population variances of random variables are just two properties 
of the distributions of those random variables. Naturally, the other properties 
of the distributions of b and a depend on the distributions of the εi’s as well.

Here, the simplest and most common strategy would be to assume that 
the εi’s are normally distributed. Linear combinations of normally distributed 
random variables are themselves normally distributed. This would directly 
imply that the true distributions of b and a are normal.

If, for some reason, we didn’t want to return to this assumption, we have 
an alternative strategy. If n is sufficiently large, we can invoke a central limit 
theorem. The proof—and even statement—of these theorems requires sta-
tistical machinery beyond anything we need elsewhere in this course. So we 
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