INFERENCE IN ORDINARY LEAST SQUARES

7.0	What We Need to Know When We Finish This Chapter	232
7.1	The Distributions of b and a 234	
7.2	Estimating σ^2 236	
7.3	Confidence Intervals for <i>b</i> 241	
7.4	Hypothesis Tests for β 251	
7.5	Predicting y_i Again 261	
7.6	What Can We Say So Far about the Returns to Education?	267
7.7	Another Example 269	
7.8	Conclusion 272	
	Appendix to Chapter 7 273	
	Exercises 276	

7.0 What We Need to Know When We Finish This Chapter

This chapter addresses the question of how accurately we can estimate the values of β and α from *b* and *a*. Regression produces an estimate of the standard deviation of ε_i . This, in turn, serves as the basis for estimates of

the standard deviations of b and a. With these, we can construct confidence intervals for β and α and test hypotheses about their values. Here are the essentials.

- 1. Section 7.1: We assume that the true distributions of *b* and *a* are the normal. Because we have to estimate their variances in order to standardize them, however, we have to treat their standardized versions as having *t*-distributions if our samples are small.
- 2. Section 7.2: *Degrees of freedom* count the number of independent observations that remain in the sample after accounting for the sample statistics that we've already calculated.
- 3. Equation (7.3), section 7.2: The ordinary least squares (OLS) estimator for σ^2 , the variance of ε_i , is

$$s^2 = \frac{\sum_{i=1}^n e_i^2}{n-2}.$$

4. Equation (7.9), section 7.3: The $(1 - \alpha)$ % confidence interval for β is

$$1 - \alpha = \mathbf{P} \left(b - t_{\alpha/2}^{(n-2)} \sqrt{\frac{s^2}{\sum_{i=1}^n (x_i - \overline{x})^2}} < \beta < b + t_{\alpha/2}^{(n-2)} \sqrt{\frac{s^2}{\sum_{i=1}^n (x_i - \overline{x})^2}} \right).$$

- 5. Section 7.3: Larger samples and greater variation in x_i yield narrower confidence intervals. So does smaller σ^2 , but we can't control that.
- 6. Equation (7.16), section 7.4: The two-tailed hypothesis test for $H_0: \beta = \beta_0$ is

$$1-\alpha = \mathbf{P}\left(\beta_0 - t_{\alpha/2}^{(n-2)} \left(\sqrt{\frac{s^2}{\sum_{i=1}^n \left(x_i - \overline{x}\right)^2}}\right) < b < \beta_0 + t_{\alpha/2}^{(n-2)} \left(\sqrt{\frac{s^2}{\sum_{i=1}^n \left(x_i - \overline{x}\right)^2}}\right)\right).$$

The alternative hypothesis is $H_1: \beta \neq \beta_0$.

7. Section 7.4: The test of the null hypothesis $H_0: \beta = 0$ is always interesting because, if true, it means that x_i doesn't affect y_i .

8. Equation (7.26), section 7.4: The upper-tailed hypothesis test for $H_0: \beta = \beta_0$ is

$$1 - \alpha = \mathbf{P}\left(b < \beta_0 + t_{\alpha}^{(n-2)} \sqrt{\frac{s^2}{\sum_{i=1}^n (x_i - \overline{x})^2}}\right).$$

- 9. Section 7.5: The best linear unbiased estimator of $E(y_0)$ is $\hat{y}_0 = a + bx_0$.
- 10. Section 7.5: Predictions are usually more reliable if they are based on larger samples and made for values of the explanatory variable that are similar to those that appear in the sample.